
1. Let A be a closed algebra of real continuous functions on a compact metric
space X that separates points of X and nowhere vanishes on X.
(a) If f, g ∈ A, prove that |f | and max{f, g} are in A.
(b) For f ∈ CR(X), x ∈ X and ε > 0, prove that there is a g ∈ A such that
g(x) = f(x) and g(y) > f(y)− ε for all y ∈ X.

Solution: (a) Let {Pn} be a sequence of polynomial (Weierstrass Approxi-
mation Theorem) [0, 1] such that lim

n→∞
‖Pn(t) −

√
t‖∞ = 0 Now g = f 2 ∈ A

define h = g
‖g‖ and hn = Pn(h) ∈ A. Now max

x∈X
‖hn(x) −

√
h(x)‖ → 0 as

n→∞. Now we get
√
h = |f |

‖f‖ ∈ A imply |f | ∈ A.

Now max{f, g} = f+g+|f−g|
2

∈ A.

(b) For each y ∈ X \ {x} ( w.l.o.g we can assume f(y) 6= f(x) y ∈ X \ {x})
define

φy(t) = f(y)
f(x)− f(t)

f(x)− f(y)
+ f(x)

f(y)− f(t)

f(y)− f(x)
∈ A.

Then φy(x) = f(x) and φy(y) = f(y). Now it is easy to see that

X ⊂
⋃
y∈X

Dy, where Dy = {t ∈ X : f(t)− ε < φy(t) < f(t) + ε}

Since X is compact then there exist finite y1, y2, · · · , yn such that

X ⊂
n⋃
i=1

Dyi

Now if we define g =
φy1+φy2+···+φyn

n
we get the result.

2. Let Φ : C[0, 1]→ C[0, 1] is given by Φ(f)(x) =
∫ x
0
f(t)dt.

(a) Prove that Φ is continuous and Φ(B) is relatively compact for any
bounded set B ⊂ C[0, 1].
(b) Is Φ is contraction? Does Φ have a unique fixed point? Justify your
answer.

Solution: (a) We can see that |Φ(f)(x)| ≤ |x|‖f‖∞ and using the linearity
of Φ we get

‖Φ(f − g)‖∞ ≤ ‖f − g‖∞. (0.1) equi
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Let B ⊂ C[0, 1] is bounded then ‖Φ(f)‖∞ ≤ ‖f‖∞ ≤ M ∀ f ∈ B. Now
equi
0.1

will give the equicontinuity of
(
Φ(f)

)
f∈B. Now Arzela-Ascoli will give the

result.

(b) Let f(t) = 1 then ‖Φ(f)‖∞ = ‖f‖∞ = 1, so Φ is not a contraction.
Let g is a fixed point of Φ then Φ(g) = g i.e

∫ x
0
g(t)dt = g(x) on [0, 1]. This

will give g is differentiable and g′(x) = g(x) with g(0) = 0. This is only true
if g(x) = 0 on [0, 1] therefore Φ has a unique fixed point.

3. Let X be a complete metric space and φ : X → X be a map.
(a) If φ is a contraction prove that φ has a unique fixed point x ∈ X and
limn→∞ φ

n(y) = y for all y ∈ X.
(b) Suppose there is a sequence (an) such that

∑
n an <∞ and d(φn(x), φn(y)) ≤

and(x, y) for all n ≥ 1 and x, y ∈ X. Prove that φ has a unique fixed point
x ∈ X and limn→∞ φ

n(y) = y for all y ∈ X.

solution: (a) Let φ(x) = x and φ(y) = y and x 6= y, since φ is contrac-
tion we have d(x, y) = d(φ(x), φ(y)) ≤ cd(x, y) < d(x, y), c < 1 this is not
true so x = y.
Let y ∈ X then

d(φn(y), x) = d(φn(y), φ(x)) ≤ cd(φn−1(y), x) ≤ · · · ≤ cn−1d(φ(y), x).

Now the result will follow from continuity of d : X ×X → R and c < 1.

(b) Since
∑
an < ∞ then limn→∞ an = 0 ,i.e |an| < c < 1 ∀ n > M.

Now we observe that for n > M

d(φn(x), φn(y)) ≤ a1a2 · · · and(x, y) < a1a2 · · · aMcn−Md(x, y).

Now the result will follow from above method.

4. (a) Discuss Implicit Function Theorem for F at (2,−1, 2, 1) where F : R2×
R2 → R2 is given by F (x, y, u, v) = (x2−y2−u3+v2+4, 2xy+y2−2u2+3v4+8)
(b) Let X be a compact metric space and g be a continuous function on C.
Prove that φ : C(X) −→ C(X) defined by φ(f) = g � f is continuous.

solution: (a) We can see that F (2,−1, 2, 1) = 0 and

f ′(2,−1, 0, 0) =

(
4 2
−2 0

)
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is invertible so there exist nbd of W ⊂ R2 and differentiable function g :
W → R2 such that g(2, 1) = (2,−1) and f(g(y), y) = 0 ∀ y ∈ W .

(b)Let fn → f in C(X) as n→∞ i.e supx∈X |fn(x)− f(x)| → 0 as n→∞.
W.l.o.g we can assume fn(X) and f(X) are contained in B,a compact subset
of C for large enough n. Now g is uniformly continuous on B. The continuity
of φ will follow from the uniform continuity of φ and the following

‖φ(fn)− φ(f)‖∞ = sup
x∈X
|g(fn(x))− g((f(x))|.

5. (a) Let f be a continuously differentiable map of an open set E of Rn into
Rn . If f ′(x) is invertible for every x ∈ E, prove that f is an open map.
(b) Suppose f is a differentiable 2π-periodic function such that f ′ ∈ R[−π, π].
Assume f ∼

∑
cne

inx . Prove that
∑
n2|cn|2 and

∑
|cn| is finite.

solution: (a) See theorem 9.25 rudin (principle of mathematical analysis).
(b) Since f is differentiable we can compute explicitely the fourier cofficient
of f ′ and write f ′ ∼

∑
incne

inx. Now we are given that f ′ is Riemann
integrable using parseval inequality we have∑

n2|cn|2 =

∫
|f ′(x)|2dx.

6. Let f ∈ R[−2π, 2π] be a 2π-periodic function and f ∼
∑∞
−∞ cne

inx.
(a) If for some x ∈ [−π, π], there is a δ > 0 and M < ∞ such that for all
t ∈ (−δ, δ), |f(x+t)−f(t)| ≤M |t|, prove that limN→∞

∑N
n=−N cne

inx = f(x).

(b) prove that limN→∞
1
2π

∫ π
−π |f(t)−

∑N
n=−N cne

int|2dt = 0.

Solution: (a) See 8.14 Theorem of Rudin (principle of mathematical anal-
ysis). (b) 8.16 Parsevals theorem Rudin (principle of mathematical analy-
sis).

7. Let f(x) = (π − |x|)2 on [−π, π]. Prove that f(x) = π2

3
+ 4

∑∞
1

cosnx
n2
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solution: We can write

f(x) =
a0
2

+
∑

an cosnx+
∑
n

bn sinnx

An explicite calculation will give

a0 =
1

π

∫ π

−π
f(x)dx =

2π2

3

an =
1

π

∫ π

−π
f(x) cosnxdx =

4π

n2

bn =
1

π

∫ π

−π
f(x) sinnxdx = 0

Hence the result.
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