1. Let \mathcal{A} be a closed algebra of real continuous functions on a compact metric space X that separates points of X and nowhere vanishes on X.

(a) If $f, g \in \mathcal{A}$, prove that |f| and max $\{f, g\}$ are in \mathcal{A} .

(b) For $f \in C_{\mathbb{R}}(X), x \in X$ and $\epsilon > 0$, prove that there is a $g \in \mathcal{A}$ such that g(x) = f(x) and $g(y) > f(y) - \epsilon$ for all $y \in X$.

Solution: (a) Let $\{P_n\}$ be a sequence of polynomial (Weierstrass Approximation Theorem) [0, 1] such that $\lim_{n\to\infty} ||P_n(t) - \sqrt{t}||_{\infty} = 0$ Now $g = f^2 \in \mathcal{A}$ define $h = \frac{g}{||g||}$ and $h_n = P_n(h) \in \mathcal{A}$. Now $\max_{x \in X} ||h_n(x) - \sqrt{h(x)}|| \to 0$ as $n \to \infty$. Now we get $\sqrt{h} = \frac{|f|}{||f||} \in \mathcal{A}$ imply $|f| \in \mathcal{A}$. Now $\max\{f, g\} = \frac{f+g+|f-g|}{2} \in \mathcal{A}$.

(b) For each $y \in X \setminus \{x\}$ (w.l.o.g we can assume $f(y) \neq f(x) \ y \in X \setminus \{x\}$) define

$$\phi_y(t) = f(y)\frac{f(x) - f(t)}{f(x) - f(y)} + f(x)\frac{f(y) - f(t)}{f(y) - f(x)} \in \mathcal{A}.$$

Then $\phi_y(x) = f(x)$ and $\phi_y(y) = f(y)$. Now it is easy to see that

$$X \subset \bigcup_{y \in X} D_y, \quad where \quad D_y = \{t \in X : f(t) - \epsilon < \phi_y(t) < f(t) + \epsilon\}$$

Since X is compact then there exist finite y_1, y_2, \dots, y_n such that

$$X \subset \bigcup_{i=1}^{n} D_{y_i}$$

Now if we define $g = \frac{\phi_{y_1} + \phi_{y_2} + \dots + \phi_{y_n}}{n}$ we get the result.

2. Let $\Phi: C[0,1] \to C[0,1]$ is given by $\Phi(f)(x) = \int_0^x f(t)dt$.

(a) Prove that Φ is continuous and $\Phi(B)$ is relatively compact for any bounded set $B \subset C[0, 1]$.

(b) Is Φ is contraction? Does Φ have a unique fixed point? Justify your answer.

Solution: (a) We can see that $|\Phi(f)(x)| \leq |x| ||f||_{\infty}$ and using the linearity of Φ we get

$$\|\Phi(f-g)\|_{\infty} \le \|f-g\|_{\infty}.$$
(0.1) equi

Let $B \subset C[0,1]$ is bounded then $\|\Phi(f)\|_{\infty} \leq \|f\|_{\infty} \leq M \quad \forall f \in B$. Now 0.1will give the equicontinuity of $(\Phi(f))_{f \in B}$. Now Arzela-Ascoli will give the result.

(b) Let f(t) = 1 then $\|\Phi(f)\|_{\infty} = \|f\|_{\infty} = 1$, so Φ is not a contraction. Let g is a fixed point of Φ then $\Phi(g) = g$ i.e. $\int_0^x g(t)dt = g(x)$ on [0, 1]. This will give g is differentiable and g'(x) = g(x) with g(0) = 0. This is only true if g(x) = 0 on [0, 1] therefore Φ has a unique fixed point. \Box

3. Let X be a complete metric space and $\phi: X \to X$ be a map. (a) If ϕ is a contraction prove that ϕ has a unique fixed point $x \in X$ and $\lim_{n\to\infty} \phi^n(y) = y$ for all $y \in X$. (b) Suppose there is a sequence (a_n) such that $\sum_n a_n < \infty$ and $d(\phi^n(x), \phi^n(y)) \le a_n d(x, y)$ for all $n \ge 1$ and $x, y \in X$. Prove that ϕ has a unique fixed point $x \in X$ and $\lim_{n\to\infty} \phi^n(y) = y$ for all $y \in X$.

solution: (a) Let $\phi(x) = x$ and $\phi(y) = y$ and $x \neq y$, since ϕ is contraction we have $d(x, y) = d(\phi(x), \phi(y)) \leq cd(x, y) < d(x, y)$, c < 1 this is not true so x = y. Let $y \in X$ then

$$d(\phi^{n}(y), x) = d(\phi^{n}(y), \phi(x)) \le cd(\phi^{n-1}(y), x) \le \dots \le c^{n-1}d(\phi(y), x).$$

Now the result will follow from continuity of $d: X \times X \to \mathbb{R}$ and c < 1.

(b) Since $\sum a_n < \infty$ then $\lim_{n\to\infty} a_n = 0$, i.e. $|a_n| < c < 1 \quad \forall n > M$. Now we observe that for n > M

$$d(\phi^n(x), \phi^n(y)) \le a_1 a_2 \cdots a_n d(x, y) < a_1 a_2 \cdots a_M c^{n-M} d(x, y).$$

Now the result will follow from above method.

4. (a) Discuss Implicit Function Theorem for F at (2, -1, 2, 1) where $F : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$ is given by $F(x, y, u, v) = (x^2 - y^2 - u^3 + v^2 + 4, 2xy + y^2 - 2u^2 + 3v^4 + 8)$ (b) Let X be a compact metric space and g be a continuous function on \mathbb{C} . Prove that $\phi : C(X) \longrightarrow C(X)$ defined by $\phi(f) = g \odot f$ is continuous.

solution: (a) We can see that F(2, -1, 2, 1) = 0 and

$$f'(2, -1, 0, 0) = \begin{pmatrix} 4 & 2 \\ -2 & 0 \end{pmatrix}$$

is invertible so there exist nbd of $W \subset \mathbb{R}^2$ and differentiable function $g : W \to \mathbb{R}^2$ such that g(2,1) = (2,-1) and $f(g(y),y) = 0 \quad \forall y \in W$.

(b)Let $f_n \to f$ in C(X) as $n \to \infty$ i.e $\sup_{x \in X} |f_n(x) - f(x)| \to 0$ as $n \to \infty$. W.l.o.g we can assume $f_n(X)$ and f(X) are contained in B, a compact subset of \mathbb{C} for large enough n. Now g is uniformly continuous on B. The continuity of ϕ will follow from the uniform continuity of ϕ and the following

$$\|\phi(f_n) - \phi(f)\|_{\infty} = \sup_{x \in X} |g(f_n(x)) - g((f(x)))|.$$

5. (a) Let f be a continuously differentiable map of an open set E of \mathbb{R}^n into \mathbb{R}^n . If f'(x) is invertible for every $x \in E$, prove that f is an open map. (b) Suppose f is a differentiable 2π -periodic function such that $f' \in \mathcal{R}[-\pi,\pi]$. Assume $f \sim \sum c_n e^{inx}$. Prove that $\sum n^2 |c_n|^2$ and $\sum |c_n|$ is finite.

solution: (a) See theorem 9.25 rudin (principle of mathematical analysis). (b) Since f is differentiable we can compute explicitly the fourier cofficient of f' and write $f' \sim \sum inc_n e^{inx}$. Now we are given that f' is Riemann integrable using parseval inequality we have

$$\sum n^2 |c_n|^2 = \int |f'(x)|^2 dx.$$

6. Let $f \in \mathcal{R}[-2\pi, 2\pi]$ be a 2π -periodic function and $f \sim \sum_{-\infty}^{\infty} c_n e^{inx}$. (a) If for some $x \in [-\pi, \pi]$, there is a $\delta > 0$ and $M < \infty$ such that for all $t \in (-\delta, \delta), |f(x+t)-f(t)| \leq M|t|$, prove that $\lim_{N \to \infty} \sum_{n=-N}^{N} c_n e^{inx} = f(x)$. (b) prove that $\lim_{N \to \infty} \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(t) - \sum_{n=-N}^{N} c_n e^{int}|^2 dt = 0$.

Solution: (a) See 8.14 Theorem of Rudin (principle of mathematical analysis). (b) 8.16 Parsevals theorem Rudin (principle of mathematical analysis).

7. Let
$$f(x) = (\pi - |x|)^2$$
 on $[-\pi, \pi]$. Prove that $f(x) = \frac{\pi^2}{3} + 4\sum_{1}^{\infty} \frac{\cos nx}{n^2}$

solution: We can write

$$f(x) = \frac{a_0}{2} + \sum a_n \cos nx + \sum_n b_n \sin nx$$

An explicite calculation will give

$$a_{0} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{2\pi^{2}}{3}$$
$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{4\pi}{n^{2}}$$
$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = 0$$

Hence the result.